

Handcycling how to optimize performance Sonja de Groot

Handcycling - history

1655 - first handcycle was invented by watchmaker Stephan Farffler (1633-1689)

1875 - Velociman

A New Self-acting Invalid Carriage.

For invalids afflicted with paralysis or some other ailment which prevents them from walking, a handy little carriage has been invented by Mr. George King, of Madras Place, Holloway Road, London. It can be propelled by the person sitting in it, by hand, without

EAMES TRICYCLE CO. Manufacturers and patentees of the very latest designs of Tricycles for the crip-pled Also Tricycles for those who would

like the pleasures of cycling and do not ride the bicycle. Wheel chairs for inval-ids, and Hospital Appliances. Send for illustrated catalogue. EAMES TRICYCLE CO. 2100 Market St. San Francisco.

1880

1898, first chaindriven wheelchair

Handcycling - history

1907

1991

1917

1950

1983 - first attachable handcycle for a wheelchair.

HAND-PEDALED TRICYCLE from Freedom Specialties, Inc.

cruise up to 20 mph
coaster brake, toggle-type parking brakes
rack under seat wheelchair hich, if desired
adult and children's models
4130 chrome-moly tube frame/ 12 colors
5-year warranty on frame, manufacturer's warranty on bike parts and seat
delivery 2-4 weeks
\$895 + shipping

3-speed

Freedom Specialities' hand-pedialed cycles provide enjoyable aerobic xercise and access to the genet outdoors, et physically challenged individuals join the rest of the bikers ... all this, and a wheekhair can follow along for errands, alwy work transportation, and greater freedom. For individuals of the trans-**Freedom Specialities** Box 83 • Cleghorn, IA 51014 (712) 436-2666

1989

1986 sport version – feet forward

1993

1999 - kneeling

Handcycling - history

Arm Power

Arm Trunk Power

Handcycling From rehabilitation - Paralympics

Handcycling – why?

Compared to wheelchair propulsion:

Physiologically more efficient (Dallmeijer et al., 2004)

@ 35 W:

- Lower VO2, HR and RPE,
- Higher gross ME

Handcycling – why?

Compared to wheelchair propulsion:

• Lower shoulder loads

(Arnet et al., 2012)

Handcycling - optimization

User

Interface

Gears (A)Synchronuous Crank & hand grip Seat position Handbike

Mass Size Wheel characteristics

Fitness level Skill

Task dependent => mobility, recreation, sport

Handcycling - optimization

• Structured handcycle training – last 8 weeks of inpatient rehab (Nooijen et al., 2015)

- 3x/week 45-60 min interval training, Borg score 4-7 (N=45)
- 91% completed handcycle training; no adverse events
- Training intensity: mean Borg score 6.2 ± 1.4
- Training frequency: 1.8 ± 0.5x/week
- POpeak (36%) and VO2peak (10%) improved significantly

To promote handcycling after rehabilitation -> HandbikeBattle

- Kaunertalergletscherstrasse in Austria; 20 km, 900m个
- Teams: 4-6 former patients from 12 Dutch rehabilitation centers
- Goal: Encourage wheelchair-users to initiate or keep training after the rehabilitation period

Vere

Handcycling – HandbikeBattle

Impression:

HandbikeBattle started in 2013:

-> testing and training people in a handcycle for such a challenging event

- Best protocol for testing?
- Best training program?
- What is the effect of participating in the HandbikeBattle (training & event) on physical and mental fitness?

Handcycling – HandbikeBattle

- Graded exercise test: arm ergometry
- What protocol to select? (De Groot et al., 2019)
 - 30 s Wingate test & GXT

N=93 SCI (35 TP, 58 PP) – 80% (model) vs. 20% (validation)

Theoretical model POpeak/kg				
(+) POmean Wingate (W)				
(-) Age (years)				
(-) Sex (M/F)				
(-) Body mass index (kg/m ²)				
(-) Time since injury (years)				
(+) Lesion level (TP vs PP)				
R ² 76%				
ICC 0.89 (excellent)				

Figure 1. Scatter plots of the measured vs. predicted POpeakGXT and line of identity (solid line) and 20% deviation boundaries (dashed lines).

Handcycling – HandbikeBattle

Training for the HandbikeBattle: (Hoekstra et al., 2017)
 16% ↑ POpeak
 7% ↑ VO2peak

- What kind of training regime led to these improvements?
 - Dose-response?
 - Which methods can be used to assess training load in handcycling?

Association internal vs. external training load measures

moderate (*r*=0.3-0.5); large (*r*=0.5-0.7);

very large (r=0.7-0.9); nearly perfect (r>0.9)

Subject no.	Class	TRIMP _{sRPE} vs. TSS	
		r	Ν
1 2	H3 H3 H3 H3 H3	0.92 0.99	15 5
3 4 5		0.61 0.87 0.77	45 42 14
6 7 8 9	H4 H4 H4 H4	0.79 0.95 0.77 0.92	47 20 26 31
10 <i>r</i> within	H5 subjects	0.97 0.814	28 260

De Groot et al., 2018

Ingrid Kouwijzer – PhD student HandbikeBattle

What kind of training regime led to these improvements?
Dose-response?

Effects on QoL and its relationship with fitness Arch Phys Med Rehab submitted
 -> presentation on Friday 6 September – 9.30-9.45h.

- Predictive modeling Disabil Rehabil, 2019
- Test protocols ramp vs. 1-min vs. 3-min Eur J Appl Physiol, Accepted 2019
- Interrater & intrarater reliability ventilatory thresholds in SCI spinal Cord, 2019

Handcycling – Paralympics

From rehab to HandbikeBattle to Paralympics:

Handcycling – Classification

Fair competition with respect to level of impairment => Classification

Effects of push-off ability (closed-chain) Kouwijzer et al., 2018

- Interaction user - equipment

Fig. 2. Two-feet support (top), 1-foot support (middle), no foot support (bottom). White arrow indicates the metal frame of the footrests.

Handcycling – Classification

Evidence-based classification of handcycling athletes

Rafael Muchaxo

- Is the average race speed different between current classes? (Poster Friday 6 Sept 16.00-18.00h)
- Influence of trunk strength on handcycling performance (Oral Saturday 7 Sept 11.30-11.45h)

Handcycling - handbike

But what is good?? => Evidence?

25-14-20-Mean = 19,12 Std. Dev. = 2,833 N = 51 12-Mean = 18,20 Std. Dev. = 2,405 N = 104 Mean = 1,22 Std. Dev. = ,286 N = 101 20-15-10-Frequency ___1 Frequency Frequency 10-5-5-2-20 25 30 10 20 25 10 15 30 15 ,50 1,50 1,00 2.00 Mass handbike (kg) Crank length (cm) Ratio crank width / shoulder width

Measuring the handcycles of the HandbikeBattle participants

university of groningen

Handcycling – handbike/interface

2,50

Handcycling - handbike

Handbike

Handcycling – Handbike

Factor	(Rolling) Resistance
Mass handcycle 个 De Groot et al., 2014	\uparrow
Tyre pressure \downarrow	\uparrow
Wheel size \downarrow	\uparrow
Camber angle 个	?
Toe in/toe out 个	\uparrow
Maintenance \downarrow	\uparrow
Frontal surface 个	\uparrow

Practical applications at the Paralympics

Claudio Perret – Vista 2013

Thesis Paul Mannion - 2019

Impact of following factors on the drag of Paralympic hand-cyclists:

Arm-crank position: 9 o'clock position yielded the lowest drag area for all yaw angles Disk vs. spoked wheels & the relationship with cross winds

Figure 1. Four arm-crank positions of interest, denoted as (a) 12, (b) 9, (c) 6, and (d) 3 o'clock. The projected frontal areas corresponding to each arm-position are included for comparison.

Fig. 1. (a) Three wheel geometries under study: Zipp Sub9 disk, free-spoked Zipp 404 and Zipp 404 with spokes included. (b) Depiction of hand-cycle geometry with four variants of wheel combination variations.

What they normally do

Handcycling - interface

Handcycling - interface

Factor	Physiology	Biomechanics
Synchronuous vs Asynch Dallmeijer et al., 2004; Woude et al., 2008; Bafghi et al., 2008	<i>Sync</i> : ME 个 HR ↓ POpeak 个 VO2peak 个	<i>Sync</i> : 2D total force 个 FEF 个
Gears Woude et al., 2001; Faupin et al., 2008	Higher gear ratio _{(heavier}): VO2 ↑ HR ↑ ME ↓	<i>Higher gear ratio :</i> trunk flexion/ext 个
Crank position Faupin et al. 2008; Arnet et al., 2014; Vegter et al., 2019	<i>Fore-aft</i> : ME =	Not above shoulder Elbow angle 15°: contact force ↓ Fore-aft closest to trunk
Crank length Krämer et al., 2009; Goosey-Tolfrey et al., 2008	Longer: PO 个 ME ↓ Width: PO =	
Hand grip angles Krämer et al., 2009; Abel et al., 2015	+30° optimal PO generation HRpeak, VO2peak = Vertical grip: lactate 个	
Seating position Faupin et al, 2008; Arnet et al., 2012 & 2014; Verellen et al., 2012; Kouwijzer et al., 2018	<i>Kneeling</i> : POpeak 个 VO2peak 个 ME ↓	Back seat more upright: Shoulder load \downarrow

Ben Stone PhD thesis: Handbike configuration

NB Different test protocols, handbike set-ups, participants, etc.

Optimization of handcycling performance (physiological & biomechanical) is important from Rehabilitation to Paralympics

Optimization of:

- The user
- The handbike
- The interface

All individually adjusted in the context of the task (mobility, recreation, sport)

Thank you for your attention!

Email: s.d.groot@reade.nl